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The non-linear magnetization characteristics of recently developed ferrofluids 
complicate studies of wave dynamics and stability. A general formulation of 
the incompressible ferrohydrodynamics of a ferrofluid with non-linear magnetiza- 
tion Characteristics is presented, which distinguishes clearly between effects of 
inhomogeneities in the fluid properties and saturation effects from non-uniform 
fields. The formulation makes it clear that, with uniform and non-uniform fields, 
the magnetic coupling with homogeneous fluids is confined to interfaces; hence, 
it is a convenient representation for surface interactions. 

Detailed attention is given to waves and instabilities on a planar interface 
between ferrofluids stressed by an arbitrarily directed magnetic field. The close 
connexion with related work in electrohydrodynamics is cited, and the effect 
of the non-linear magnetization characteristics on oscillation frequencies and 
conditions for instability is emphasized. The effects of non-uniform fields are 
investigated using quasi-one-dimensional models for the imposed fields in which 
either a perpendicular or a tangential imposed field varies in a direction perpen- 
dicular to the interface. Three experiments are reported which support the 
theoretical models and emphasize the interfacial dynamics as well as the stabi- 
lizing effects of ft tangential magnetic field. The resonance frequencies of ferro- 
hydrodynamic surface waves are measured as a function of magnetization, 
with fields imposed first perpendicular, and second tangential, to the unperturbed 
interface. In  a third experiment the second configuration is augmented by a 
gradient in the imposed magnetic field to demonstrate the stabilization of a ferro- 
fluid surface supported against gravity over air; the ferromagnetic stabilization 
of a Rayleigh-Taylor instability. 

(i) Background 1. Introduction 

Ferrofluids, as developed by Rosensweig and his associates, are colloidal dis- 
persions of submicron-sized ferrite particles in a carrier or parent fluid such as 
kerosene (Rosensweig 1 9 6 6 ~ ) .  Unlike earlier fluids of this sort, the particles do 
not flocculate upon the application of strong magnetic fields; thermal agitation, 
and the presence of a dispersing agent that coats each particle, guarantee a 
permanent colloid. Experiments indicate that there is only a small dependence 
of viscosity and surface tension on magnetization. In  kerosene-based fluids the 
conductivity, which is very small, is on the order of that of the base. 
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Numerous applications for these fluids appear possible, including novel 
energy-conversion schemes (Resler & Rosensweig 1967), levitation devices 
(Rosensweig 1966b) and rotating seals (Rosensweig, Miskolczy & Ezekiel 1968). 
In  these developments, an understanding of the fundamental ferrofluid dynamics 
is essential. 

Research into the static response of the fluids to the magnetization forces 
has been carried forward (Neuringer & Rosensweig 1964). In  systems of homo- 
geneous ferroliquids, surface interactions are particularly important, as em- 
phasized by a recent investigation of the destablizing influence of a magnetic 
field initially imposed normal to the flat interface of a ferrofluid (Cowley & 
Rosensweig 1967). This work draws attention to the limitations arising from 
static instability and, for the particular case considered, shows how account 
can be taken of non-linear magnetization characteristics. 

(ii) Xcope 

In  the work presented here, a general formulation is developed for studying 
wave dynamics and instability in non-linear ferrofluids with bias fields that can 
not only have an arbitrary orientation, but can also be non-uniform. The formula- 
tion permits a clear distinction between the roles of inhomogeneity in the fluid 
properties and non-uniformities in the imposed magnetic field. 

Consideration is given to interfacial dynamics and instability of homogeneous 
liquids separated by a planar interface stressed by a uniform field of arbitrary 
orientation. Then, the effects of field gradients in such systems are explored for 
particular field orientations. Finally, several experiments are described, which 
serve to illustrate the nature of ferrofluid surface interactions, with emphasis 
given to the dynamic, rather than the static, behaviour. 

(iii) Dielectrophoretic analogy 

If the magnetization characteristics of ferrofluids were linear, their dynamics 
would be the complete analogue of electrohydrodynamic polarization inter- 
actions: dielectrophoretic phenomena (Pohl 1960). Because much information 
is now available concerning this class of electrohydrodynamics, it is possible 
to cite a number of studies that have direct implications for ferrohydrodynamics. 
The analogy between dielectric and magnetic fluid mechanics is developed in 
an early work on linearly magnetized fluids (Melcher 1963). The effects of free 
charge commonly mask dielectrophoretic effects, and so high frequency a.c. elec- 
tric fields are often used to bias the fluids (Devitt & Melcher 1965). Because of 
practical applications to the orientation of cryogenic liquids in the zero-gravity 
environments of space, analyses have been made of systems of homogeneous 
and inhomogeneous liquids with interfaces stressed by essentially tangential 
fields with gradients directed perpendicular to their interfaces (Melcher & 
Hurwitz 1967), of homogeneous liquids interacting with concentrated field 
gradients (Melcher, Hurwitz & Fax 1969) and of steady and dynamic linear and 
rotating flows confined by dielectrophoretic ‘walls’ that take advantage of 
concentrated field gradients (Melcher et al. 1969; Calvert & Melcher 1969). 
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Much of the theoretical development which follows is motivated by this pre- 
vious activity in electrohydrodynamics. The major contribution, made by placing 
this workin the context of ferrofluid dynamics, is in the extensions of the formula- 
tion to the case of non-linear magnetization characteristics. The theoretical 
extensions made here apply equally well to the dielectrophoretic interactions of 
liquids having non-linear polarization characteristics. 

2. Formulation 
(i) Magnetization and deformation : $eZd equations 

In the class of magnetic liquids available, the magnetization density M is in- 
duced collinear with the magnetic field intensity H. The magnetization magnitude 
characteristics of figure 1 therefore provide sufficient information for represent- 
ing the effects of the fluid motion on the magnetic fields. In terms of the magnetic 

(1) 
susceptibility, M = x(al.. .an, H2) H, 
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FIGURE 1. Fluid magnetization density M as a function of the imposed magnetic field 
intensity H .  The inserts show the dependence of x and x, on H .  

where HZ = H - H. Here, the parameters al. ..aB are local properties of the fluid. 
The susceptibility x is determined by this set of .n parameters and the magnitude 
of the local magnetic field intensity. For example, (1) might take the forms 
x = al(a,H2+ l)-* (see figure 1) or x = alsech 2/(H2)a2, in which case there 
are only two a,'s. These might be determined by attempting to fit the assumed 
relation to the magnetization characteristic. A constitutive law having the form 
of (1) does not include the possibility that the magnetization is hysteretic, or 
even rate-dependent. Magnetic fluids do exhibit relaxation effects associated 
with the time required for particle orientation, but this would be a consideration 
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a t  much higher frequencies than are of interest here; typically, lo3 Hz rather 
than 10 Hz. 

The characteristic (figure 1) represents the magnetization of a homogeneous 
liquid sample; a family of such curves is required to describe an inhomogeneous 
liquid. Although the parameter a, is similar to the parameter H2, in that it is an 
Eulerian function of space and time [al(r, t ) ] ,  it differs from H2 in so far as i t  
represents the local magnetic properties of the fluid and, ignoring effects of 
compressibility, can be identified with a given fluid particle. This results in 

Dai 
- = 0. 
Dt 

Examples of inhomogeneous systems, for which this representation is valid, are 
regions of immiscible fluids separated by interfaces, or stratified regions of fluid 
formed from layers of miscible liquids having differing magnetic and mechanical 
properties. In  any case, effects of diffusion, heat conduction and compressibility 
must be ignorable for ( 2 )  to be valid. 

The dependences of the ais on r account for the contribution of fluid inhomo- 
geneity to variations in the local magnetization, while the dependence of H 2  on r 
accounts for the effect of a non-uniform magnetic field intensity. It will be con- 
venient a t  times to use the magnetic flux density B and permeability p, where in 
the usual way 

MKS units are used, with po = 477 x 10-7. 

(3) B = P ( U ~ , . - . , ~ ~ , H ~ ) H ;  ~ = ~ o ( x + 1 ) .  

In  writing the field equations for the stressed fluid, it is helpful to define the 
tensor 

where 8jk is the Kronecker delta function. If these parameters are evaluated at  a 
given (M,H) they can be written in terms of the appropriate susceptibilities x 
and xs defined geometrically in terms of the M-H curve in figure 1. In  terms of x 

because aplaH2 = (x, - x),uo/2H2. 
Interest here centres around motions initiated from a static equilibrium, 

wherein the magnetic field intensity has the equilibrium distribution HO(r), 
and any inhomogeneity of the fluid is accounted for by equilibrium distributions 
of the ais, ap(r). The dynamic field variables then take the form 

H = HO(r)-V$(r,t), (6) 

ai= a:(r)+a{(r,t), (7) 
where - V$ represents the perturbation magnetic field intensity and a; the local 
perturbation in the magnetization parameter ai. Note that (6) automatically 
guarantees that perturbations in H are irrotational. The condition that the 
magnetic flux density be solenoidal gives a relation that must be satisfied by $ 
and the @is. v * ( r P o w  +p’(r,t) 1 P O -  W I ]  = 0, ( 8 )  
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where the perturbation in permeability p' is in turn 

with the superscript zero indicating quantities evaluated at [a:, (H0)2] .  To linear 
terms, these last two expressions require that V.poHo = 0 and 

with the components of l& given by either (4) or (5 )  evaluated at [a:,(H0)2]. 

Terms where an index appears twice and the summation is not indicated explicitly 
are to be summed 1 to 3. 

The linearization of (2) yields n additional equations which relate the at's 
to the velocity v of the fluid. 

These last two expressions embody the influence of the fluid motions on the 
magnetic field distribution. 

(ii) Porce density and stress tensor 

For a linear relationship between M and H ,  where x and p are independent of H2, 
the classic Korteweg-Helmholtz force density - H2Vp/2 and its associated stress 
tensor qj = p q 4 . -  @'cipH2 account for the coupling of the magnetic field to 
the fluid (Stratton 1941). Effects of magnetization in the absence of an applied 
field and thermodynamic effects such as fluid compressibility and temperature 
are considered insignificant for the present purposes; thus, a derivation of the 
appropriate force density, including the non-linear magnetization, can be made 
by considering conservation of energy for a thermodynamic subsystem, con- 
sisting of only the magnetic fields as they are influenced by the geometric de- 
formations of the magnetized fluids. Energy storage in kinetic form or in the form 
of internal (heat) energy is excluded. The basic conservation theorem for the sub- 
system states that inputs of electrical power lead either to an increase in energy 
stored in the magnetic field, or to work done on the mechnical environment 
through deformations of the fluid caused by the desired magnetization force 
density. This approach, so widely used in elementary lumped parameter electro- 
mechanics for finding total electrical forces (Woodson & Melcher 1968a), has 
been used to find the magnetization force density for cases in which the M-H 
curves are linear (Woodson & Melcher 19683). Because the derivation for the 
non-linear case follows steps given in the last reference, only a sketch of the more 
general derivation need be given here. 

It is convenient to think of the fluid as being magnetized by a magnetic circuit 
having the excitation current i, with variations of continuum variables indicated 
by 6( ). Thus, incremental variations in fluid displacements 5 are given by 65. 
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Then, with the magnetic fields established and the excitation current i held 
constant, it can be shown that 

with w' the coenergy density 

w' = loRX +p( al.. .a,, Ha) S I P .  

This latter expression is determined from the magnetization characteristic by 
establishing the current, i, with the fluid constrained mechanically. 

The integration of (12) is carried out over the volume occupied by the magnetic 
field, and F is the desired magnetization force density. The steps leading to this 
statement of conservation of energy are the same as for the case where M and H 
are linearly related. It can also be shown that, because i is maintained constant, 

Then, because the at's are properties attached to the fluid particles, 

Sa, = - sg - Va,. (15) 

In view of the last two equations, conservation of energy, as expressed by (12), 
requires 

In  a treatment such as this, 5 is a thermodynamically independent variable. 
In  so far as the isolated thermodynamic subsystem is concerned, Sc can be in- 
dependently specified. Thus it follows that, although the volume V of (16) 
is not arbitrary (it includes all the volume occupied by the magnetic field), 
because Sg is arbitrary, the integrand must vanish, and therefore 

Because F is defined in an incompressible fluid only to within the gradient 
of a pressure, there are other forms in which the force density can be correctly 
written (Cowley & Rosensweig 1967; Penfield & Haus 1967). This one is most 
convenient for present purposes, because in systems of homogeneous fluids 
Vai = 0, except at  interfaces. Thus, with F in the form of (17) it  is clear that the 
coupling is confined to interfaces for systems of homogeneous fluids in uniform 
and non-uniform fields. Furthermore, the surface force density caused by dis- 
continuities in the a i s  is clearly perpendicular to the interface. As in the linear 
case, there are no shear surface force densities produced at interfaces by the 
magnetic field. 

It is a matter of direct evaluation to show that (17) can be written in the form 

F = V.T; T.=pH,q . -S i jw' .  E 3  (18) 
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It is the components of T that  will be used to  write the interfacial force balance 
in$3and $4.  

(iii) Equations of motion 

In addition to (10) and (1 l), which represent the influence of fluid motion on the 
magnetic field distribution, and a linearized form of (17) or (18), a complete 
description of the fluid dynamics in magnetic fields requires the usual linearized 
Navier-Stokes equation for an inviscid fluid 

and conservation of mass for an incompressible fluid 

v - v  = 0, 

These equations represent 3 + n scalar equations and one vector equation for the 
dependent variables +, p ' ,  p', al.. .urn, v. 

3. Systems of homogeneous liquids: uniform fields 
The fluid-field configuration shown in figure 2 is the basis for gaining con- 

siderable insight into the 'self-field' dynamics of systems of ferrofluids. In  regions 
(a) and (b) the fluid has uniform properties: a: = constant. It follows from (11) 
and (7) that the perturbations a; are then zero. Then, as is evident from (17) 
for the force density, coupling is confined to the interface. To make matters even 
simpler, an exact solution for the equilibrium magnetic field in each region, as 
generated by the surface currents and the magnet poles, is Ho = Hiix + H i  i,, 
where in a given region individual components are uniform. Thus, the para- 
meters [tj are constants in a given region, determined by the properties of the 
appropriate fluid and the relative magnitudes of the field components. If the 
equilibrium quantities are to be associated with a given fluid, the superscript (0) 
is replaced by an (a) or (b). 

In  the following sections the dispersion equation is developed for waves on 
the interface. Because the imposed fields are uniform, the perturbation inter- 
facial forces can arise only from alterations in the original field distribution 
arising from transverse motions in the magnetized interface; hence, these waves 
demonstrate 'self-field' effects. In  $ 4 the complications of non-uniform imposed 
fields are discussed. These perturbation surface forces can also arise from motions 
through the initially non-uniform field. 

A t  the outset, the distribution of fields is found, assuming a deflexion 

6 = Re[expj(wt-k,y-kzx). 

(i) Bulk fields 

Because the equilibrium fields have only x and y components, (10) becomes 
(D = 4 )/dx), 

Lx~2$-jk,2L'xuD$- (kXv,+k~CZz)$ = 0, (22) 
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where it has been assumed that + = Re $(x) expj(wt - k, y - k,z).  Substitution 
shows that (22) in turn has solutions: 

$ = eqx; q = j y * P ,  (23) 

where Y = kyc!v/c:x7 
0 2 )  0 P = [c :x (qc ; ,  + c-3 - ~;(czv) 1 K X X .  

FIGURE 2. Cross-sectional view of initially planar interface between magnetized liquids 
(a)  and ( b ) .  Current sheets at x = - b ,  a, as well as excitation currents for the magnetic 
circuit, induce the initially uniform fields H a  and Hb. 

The pole faces are highly permeable, therefore the perturbation tangential field 
is taken as zero at their surfaces. This is equivalent to making $?(a) = 0 and 
$( - b) = 0. The appropriate linear combination of solutions for (23) in each region 
is then 

The constants, A and C ,  are determined by the interfacial conditions that H 
tangential and B normal to the interface be continuous. In terms of the normal 
vector n N ix - (atlay) i, - (a t /&)  i,, these conditions are 

$a = Ae~yaxsinhpa(x-a); $b = CeiYbxsinh,!lb(x+b). (24) 

n x  IH0-V$l = 0 (25) 

and n . lpoHo + p’Ho -poV$l = 0, (26) 
respectively, at 2 = 5, with IFo] = Fa-pb and 141 = (ba-& To linear terms, 
these expressions are satisfied if, at x = 0, 

111.1 = IH% 

and - 

Direct substitution of (24) into these last two expressions gives 

A = c{ -pOIH:Ipb c i x  P b  +jk,lpoH~I sinh Pbb)lA, (29) 
where A = ~o(pbc~xsinhpaa cosh/3bb+/3a~x coshpaasinhPbb), 

and a similar expression for C ,  given by (29) with all a’s and b’s interchanged 
and the sign of the second term reversed. Thus, given the interface geometry, 
the fields are obtained. The associated interfacial stresses can now be computed. 
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(ii) Magnetization surface force density 

The x-directed magnetization surface force density is 

which in view of (18) requires the linearized forms of pHz and w' : 

Because the equilibrium fields satisfy the condition IpOH$HO,I = HOyIpoPxI = 0,  
the last term in (30) vanishes. It follows from the last two equations, after sub- 
stitution of the travelling-wave form for $, that 

$x = I -poHO,~~~D~+j lc , (pu ,H;~~ , -pOHO,)~I .  (32) 

I n  turn, the surface force density can be related to the surface deflexion by 
using the fields computed in $ 3  (i), summarized by (24) and (29): 

!f'x = l[p:\ H;I2 /3&',<b,,& cosh Pbb cosh Baa - kElpouOHO,\ sinh Pbb sinh Paa]/A, 
(33) 

where A is defined by (29). 
Written in the form of (33), it  is evident that the surface force density is either 

exactly in or out of temporal and spatial phase with the deflexion. The effect 
of the normal field PZ is to increase further a given deflexion, while that of H", 
is to return the interface to its equilibrium position. This latter force exists only 
if there are components of the wave propagating in the y direction. These same 
qualitative consequences apply to the linear magnetization case with the only 
difference being that the non-linearity alters the magnitude of the magnetic 
field effects on the perturbation interfacial shear. 

The dispersion equation follows from the requirement that the surface force- 
displacement relation of (33) be consistent with the mechanical equations of 
motion. 

(iii) Dispersion equation 
Because there are no magnetic interfacial shear tractions, it serves the present 
purposes to use an inviscid fluid model. Travelling-wave solutions of the form 
p = Re @(x) exp(j(wt - k, y - &z)} in the bulk are determined by the conditions 
that the normal velocity be zero at the pole faces and continuous at  the interface, 
and that the fluid displacement be = Re [exp(j(wt - k,y - k z z ) }  at the inter- 
face. It follows that the complex amplitudes of the perturbation pressures at  
points a and p just above and below the interface have the difference: 

with k = (ki + ICE)). The balance of surface forces, as illustrated in figure 2, then 
requires that P-jY = @z-kBT& (35) 
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with @x the complex amplitude of the magnetic surface force density. The last 
term arises from the linearization of the surface force density T[P[/ay2+ 
a2</8zz], where T is the surface tension. 

Substitution of (33) and (34) into (35), with the requirement that g += 0, 
gives the desired dispersion equation for waves on the interface. 

- ki],uoH:I sinh /?, b sinh Pa a], (36) 
where peq = pa coth ka +Pa coth kb, 

A = pOIPb~~xsinhpaUcoshpbb +P,C~,CoshP,asinhpbb]. 

Attention is now given to motions resulting from particular orientations of the 
imposed fields. The general relation (36) shows that, although magnetization of 
the fluid in one direction can produce a saturation coupling to fields in another 
direction, the interfacial dynamics resulting from an imposed field of arbitrary 
orientation are essentially a superposition of effects due to the tangential and 
perpendicular field components. This is not quite true, of course, because the 
parameters p and Caj depend on both field components. For qualitative purposes 
and for presently available fluids, however, this gives a fair picture of the 
dynamics. 

(iv) Perpendicular field waves and instabilities 

In  the case of a magnetic liquid bounded from above by a non-magnetic gas or 
liquid, and stressed by a perpendicular field, parameters in (36) reduce to: 

H", = 0 ;  cx = g", = = 1; [$/ = gz = x+ 1; 

P b  = k7; C L  = x s + l .  

Pa = 1.0; C& = c:", = 0; P a  = k; } (37) 

Here, it is convenient to define 

7 = "1 +x)/(l +xs)14 ill; = X E .  (38) 

In  this case (36) reduces to 

w2peq = gk(pb -pa) + k3T -po(lM92k2/(tanh ka + [tanh (kyb)]/r(x, + I)}-'. (39) 

As for the case of a linear magnetization characteristic, the phase velocity of 
interfacial waves is reduced by the magnetic field. In  the limit in which the 
pole faces are well removed from the interface (kqb % 1 ,  iia % l), (39) shows that 
there is a static instability that first occurs at  the Taylor wavelength 2n/k*, 
k* = [g(pb - pa)/T]* as M i  is raised to- the critical value 

These last deductions are those calculated and experimentally verified by Cowley 
& Rosensweig (1967). Note that (39) implies that there is an exchange of stabili- 
ties, i.e. that the instability is incipient with w = 0. 
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In $ 5  further support will be given to the model through an experiment in 
which the wavelength (and hence k) is essentially fixed, and the dependence of 
the frequency on Hi, as given by (39)) verified. 

(v) Tangential jield surface waves 
With H", = 0 and the equilibrium H tangential to the interface, there is a ten- 
dency for waves propagating along the field lines to be stiffened, to propagate 
more rapidly. Parameters in region (a )  are as for 0 3(iv) and, in region (b) ,  

Thus, the dispersion equation becomes 

As for the magnetically linear case, self-field effects are absent for perturbations 
propagating across the lines of field intensity. In 5 5 an experiment will show the 
upward shift in frequency of a given wavelength predicted by (42) as a function 
of q. 

4. Systems of homogeneous liquids : non-uniform fields 
The ferrohydrodynamics of interfaces in uniform imposed fields, as developed 

in 0 3 involves the self-consistent interaction of fields and fluids. The perturba- 
tion in the magnetic surface force density in this case arises from alterations of 
the field distribution caused solely by distortions of the fluid interface, On the 
other hand, if a non-uniform field is present the force perturbations can also 
arise simply from displacements of the interface through the imposed field. 
(See Calvert & Melcher 1969 for a discussion of 'self-field' and 'imposed-field' 
effects.) 

Gradients in the imposed field are a consequence of field 'curvature'. Examples 
are shown in figure 3, where the perpendicular and tangential field configurations 
are illustrated in cylindrical geometry for an interface having the equilibrium 
radius of curvature R. 

It is not the objective here to develop the details of any given non-uniform 
field configuration, but rather to highlight the essential features of the dynamics 
in non-uniform fields by representing the field gradient effects in terms of quasi- 
one-dimensional models. In  the following, it is still assumed that the interface 
is initially flat (figure 2), but that the imposed field components vary spatially 
with the z direction. Of course, Cartesian field components that vary with only 
one spatial co-ordinate cannot be both solenoidal and irrotational. However, 
by judicious approximations, aimed at  representing situations such as those 
shown in figure 3, where the field does have curvature but where interfacial 
wavelengths are small compared with the radius of curvature, physically mean- 
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ingful results can be obtained without becoming involved in the details of Bessel's 
functions, spherical harmonics, etc. The quasi-one-dimensional model summar- 
izes the salient features of a wide class of configurations, because the detailed 

\ Current sheet 

FIQURE 3. Examples of non-uniform equilibrium fields: (a) field perpendicular to inter- 
face; (b )  field tangential to interface; (c) quasi-one-dimensional model for ( a ) ;  ( d )  model 
for (b).  

nature of the field non-uniformity is de-emphasized. The local effects of non- 
uniformities found in cylindrical, spherical or other geometries are equally well 
represented simply by evaluating the appropriate local gradients. 

Because the fields are non-uniform, the susceptibility xis a function of position 
in the bulk of the liquids. Even so, with the force density representation of (17), 
the coupling between fluid and field remains confined to the interface. 

(i) Boussinesq approximation 

In the fluid bulk, a; = 0 and the magnetic field distribution is again predicted 
by (lo), which becomes 

Because the imposed fields are a function of z alone, c& = $k(x). Thus (43), 
although linear, has coefficients that depend on x. 
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In  the following, the coefficients in (43) are approximated by constants evalu- 
ated at  the equilibrium position of the interface, e.g. t;,"(x) -f (&(O) = &. With 
this approximation, familiar from the literature for thermal convection insta- 
bility (Boussinesq 1903), (43) becomes the constant coefficient expression, 

The 'Boussinesq' approximation is particularly well justified here because co- 
efficients are evaluated at the interface, and the surface wave solutions of interest 
tend to be confined to the neighbourhood of the interface. Note that the first 
term in (44) vanishes unless the fluid is both magnetically non-linear and stressed 
by a non-uniform field. 

(ii) Perpendic&r-$eld gradient effects 

If the imposed field takes the form Ho = H:(x) i,, (44) reduces to 

D2$ + [ ( ~ C z J C / G z l D $  - (PCk2/P0 Gz) $ = 0, (45) 

where it has been assumed that @ = Re $(x) expj(wt - kv y - kzz) .  It follows 
that solutions in the respective regions are 

$ - A e-",sinh8 x+ (46) 

Q = (Kn)"/2Gz; 8 = [r2 + W2/P0Gz)lJ.  (47) 

(3 - (3 I ( b a ) 1 7  

with r and IS defined in the appropriate regions as 

Note that the solutions (46) have been chosen to satisfy the boundary conditions 
at x = a and x = - b, discussed in 0 3 (i). Even though the equilibrium field is now 
spatially varying, the linearized conditions at  x = 0 reduce to (27) and (28), 
with the latter reducing further to lGzD$l = 0. Substitution gives the constants 
A ,  and A,  in terms of gin a form similiar to (29). 

The magnetization force density is found by following steps similar to those of 
(30)-( 33). Now the equilibrium part of T,, is a function of x and, as it is evaluated 
at  the perturbed position of the interface, contributes a perturbation term pro- 
portional to c. Thus, (30) becomes 

(48) PZ = lrDcPomIcJ&J - IPoL&D$l. 

Because $ has been evaluated in terms of g, this expression, together with 
(34), can be introduced into the stress balance equation (35), to give an expression 
that is homogeneous in g. The dispersion equation follows from the condition 
that the coefficient of ,$vanish. 

W2P,q = S 4 P b  --Pa) + k3T- ~ [ D ( P o m l c I q  

- k p o ~ , C ~ , ~ H ~ \ 2  [[&(a, + 8, coth 8,a)-l+ ex( - rb + 8, coth 8,b)-l]-l.  
(49) 

In  this expression, Frn evaluated in regions (a) and (b )  is written as {!& and &. 
In  interpreting this expression, remember that each term arises because of a 

perturbation surface force density. The last term is attributable to the mutual 
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coupling between field and fluid and is negative. Although the field non-uni- 
formity does play a quantitative role, the self-field effects are qualitatively the 
same destabilizing influence as for a uniform imposed field. 

The third term in (49) reflects the ‘imposed’ field effect. It is present because 
of the change in magnetic stress experienced by the interface as it is displaced 
into a region of greater or lesser field intensity. For example, if fluid (a )  of figure 
3 (a) is magnetic, while (b)  is not, then there is a magnetic surface force acting 
downward on the interface in proportion to (HO,)2 at the interface. Suppose that 
[DpOHO,]C > 0,  as in the case illustrated. Then an upward excursion of the inter- 
face is accompanied by an increase in the local downward directed magnetic 
stress, and hence also a magnetic surface force that tends to restore the equili- 
brium. This stabilizing effect is consistent with (49), because in the example 
IHgI < 0,  which implies that the third term tends to make w2 positive. Specific- 
ally, for the example in cylindrical co-ordinates, poHO = B,R/(R - x) (B, the 
equilibrium radial flux density at  the interface) requires the third term in (49) 
to become: 

(50)  
kB: 1 

-k[D(Pf4,)IClH$I = -Rlpl.  

If fluid (a) is magnetic, while (b)  is not, ll/pcl is negative and the term on the 
right in (50) is positive; hence it represents stabilization of the interface. 

(iii) Tangential JieZd-gradient stabilization, 
Field configurations characterized by 3 (b)  are modelled by the planar interface 
of figure 3 ( d ) ,  with the imposed field a function of 5. The dispersion equation 
follows from steps similar to those of the previous section. Instead of (45), (44) 
reduces to 

(51) 
(DPOY 

PC 
D V  + ___ D$ - [(k; c&PU,/PC) + w$ = 0, 

so that, although solutions take the same form as in (46), the parameters govern- 
ing the spatial distribution of $ are 

cr = (Dp0)”/2pc; 6 = [ c r 2 + ( k ~ ~ ~ ~ o / p c + k ~ ) 1 ~ .  (52) 

1$1 = 0; I P W l  =jk , fH”lPCl-  (53) 

Linearized boundary conditions for the fields are again as given by (27) and 
(28); they reduce to 

These serve to fix the coefficients A,  and A,, and hence $. 
The perturbation magnetic force density, linearized to include the non- 

uniform imposed field, has the complex amplitude 
A 

T,  = --PI t PccD(~;)21”1 -&l$PcqI. (54) 

Finally, the dispersion equation follows as in previous sections by substituting 
(54), with $written in terms of f ,  together with (34), into (35): 

0 2  
p e q  = S(P6 - P u )  + k2T + 61PCl rD(H,)21” 

+ kE(Ht)2 Ipcla [,J!-~:(O-~ + 8, coth 8,a) +&( - fTb + 8, coth &,b)]-‘. (55) 
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The last term in (56) shows that the.se1f-field effects, although somewhat modi- 
fied by the saturation effects of the non-uniform field distribution, always tend 
to stabilize perturbations that propagate along the lines of magnetic field intensity. 
The third term on the right has a physical origin similar to that of the imposed 
field term discussed in the previous section; it can tend to stabilize or destabilize 
the interface, according to the sign of the gradient in field intensity. 

In  the cylindrical example of figure 3 (a), field gradients are such that, if fluid 
(a) is magnetic and (b)  is not, the field tends to produce a stable equilibrium. 
In particular, the equivalent Cartesian field is HOy = H,R/(R-x), and the third 
term of (55) becomes: 

The most critical interfacial disturbances are those propagating across the lines 
of equilibrium field intensity (ky = 0), and a condition that all wavelengths be 
stable follows from (55) as 

81rucI[D(~y)21c = H2,1Pl/R. (56)  

$I~cI[D(H~)21c ’ g ( P a - P b ) *  (57) 

Thus, the field gradient can be used to stabilize the equilibrium even with the 
heavier fluid ‘on top’. This type of field-gradient stabilization has assumed 
importance in dielectrophoretic orientation systems (Melcher & Hurwitz 
1967). 

(iv) Concentrated Jield -gradient s tabilimtion. 
In  $ 4  (iii) it was assumed that the field gradient was small and comparable in effect 
to the ‘self-fields’ in its influence. By contrast, consider the situation shown in 
figure 4 (a), where magnetic sheets having the spacing s are used in conjunction 
with a magnetic circuit to produce an imposed field with a gradient that is large 
in the neighbourhood of the equilibrium interface, but essentially zero a t  adjacent 
points removed a distance s or more from the interface. (For simplicity, it  is 
assumed that the interface does not reach the neighbourhood of the upper fring- 
ing field.) If the spacing s between sections of the magnetic circuit is made small, 
this configuration can give imposed-field effects much larger than those due to 
the self fields. Hence, the latter are ignored in the following remarks. 

As the interface passes through the fringing field region, the magnetic surface 
force experienced by the interface switches from fully ‘on’ to fully ‘off within a 
displacement on the order of the spacing s. Thus, the configuration is sometimes 
referred to as being of the ‘bang-bang’ type. 

Analogous dielectrophoretic interactions with concentrated field gradients 
have been discussed elsewhere (Melcher, Guttman & Hurwitz 1969). Attention is 
confined here to indicating the simple generalizations of the electrohydrodynamic 
models required to account for non-linear magnetization characteristics. 

Interfacial oscillations and instabilities in cases like that of figure 4(a) can 
be presented with a surprising degree of accuracy by the equivalent pendulum of 
figure 4 (b). The lengths 1, and of the fluid columns are selected to approximate 
the inertial and gravitational characteristics of the mode to be represented. 
It is assumed that the magnetic segments do not impede the flow mechanically; 
an assumption that is most appropriate to motions in the x-z plane. 
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Pendulum motions are coupled to the magnetic field only at the interfaces. 
Thus, Bernoulli's equation shows that 

(58) 
d25 

(P,L+P,E,)@ = 2 ( P C z - P , ) g E + ~ x ( 5 ) ,  

where rx is the total magnetic force (per unit y-z area) acting at  the interfaces. 
Analogue measurements (Guttman 1967) show that a useful model represents the 
variation of the imposed H i  as a linear transition from (Hm)2 starting as x = 4s 
and ending as Hv = 0 at 5 = -48, as shown in figure 5 (a). The field is essentially 
the constant Hm between the segments. I n  accordance with the assumption that 
the effect of the fluid on the field is negligible, this distribution remains unaltered 
in the face of the fluid motions. 
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FIUURE 4. (a)  Interface between fluids (a) and (a) interacts with field gradient ooncen- 
trated in neighbourhood of equilibrium interface. ( b )  Pendulum model for (a). 

The surface force density T, acting on the right interface of the pendulum 
(figure 4 ( b ) )  is T, = lTxzl with T,, from (18) given as T, = - w'. That is, 

with H2 given by figure 5 (a), evaluated at the interface; where x = 5. Note that 
T m  is simply (59) with the upper limit of integration (Hm)2. 

As illustrated by the typical characteristics of figure 1, the effect of increasing 
H2 is to decrease p. Thus, the saturation magnitude of the surface force T m  
is less than is obtained if ,u were constant at its zero field value. The typical 
variation of T, is sketched in figure 5 (b ) .  

The total magnetic force per unit area on the pendulum 7, is the sum of the 
surface force densities from the two interfaces, as sketched in figure 5 ( c ) .  Like 
the dispersion equations of the previous sections, the equivalent pendulum 
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can be used to predict frequencies of oscillation and conditions for instability. 
Further, the neglect of self-fields makes it possible to account for large amplitude 
effects. Given the fluid characteristics, and H m  and s, the dependence of rx on 5 
is known, and the pendulum motions are simply represented in terms of a poten- 
tial well. This approach to investigating the large-amplitude oscillations has 
been presented in  the discussion of dielectrophoretic concentrated field inter- 
actions (Melcher, Guttman & Hurwitz 1969). Note that the saturation magnetic 

X I s'2 

FIGURE 5. (a) Variation of imposed field intensity according to the quasi-one-dimensional 
model for concentrated field gradient configuration of figure 4. ( b )  Magnetic surface force 
density on right interface in figure 4(b) .  ( 0 )  Total magnetic force (per unit y-z area) on 
equivalent pendulum on figure 4 ( b ) .  

stress Tm assumes the role played by $ , L A ( H ~ ) ~  in the linear case. For many 
engineering purposes it is appropriate to represent the large amplitude effects 
by approximating the transition region of figure 5 (c) by a straight line, saturating 
at T~ = k Tm. This model would be useful in dealing with the magnetic analogue 
to dielectrophoretic 'wall-less pipes' (Melcher et al. 1969). 

The stability of the equivalent pendulum against small amplitude oscillations 
is investigated by linearizing T~ at 6 = 0; from (59) 

Substitution of this expression into (58 )  shows that the equilibrium is stable if 

> (Pa-Pb)S. (61) 
(HrnI2 

914.1 -y- 
2 Fluid Meoh. 39 
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Note that, with the understanding that p is evaluated at  H = Hm/d2 ,  this is 
just the condition given by (57). Those perturbations that are most critical 
for interfacial stability in $4(iii) ( I c ,  = 0 )  do not lead to self-fields, so the equi- 
valence of (57) and (61) is not surprising. 

5. Experiments 
Three experiments serve to support the analytical models developed in the 

previous section, and are outlined here (Zelazo 1967). They are similar to studies 
that have been reported in dielectrophoretic fluid dynamics (Devitt & Melcher 
1965; Melcher & Hurwitz 1967). 

(i) Perpendicular field surface waves 

Convenient experiments for verifying the dispersion relations for tangential 
and normally applied magnetic fields use boundary conditions to impose a 
particular wavelength on the ferrofluid interface, and consist of the measurement 
of the shift in resonance frequency resulting from additions of magnetic field. 
A schematic representation of the experiment for the perpendicular field case 
is shown in figure 6, together with the frequency shift data that is the object of 
the experiment. 

Rectangular containers, partly filled with ferrofluid, are driven by a low- 
frequency transducer to vibrate in the horizontal plane. By shaking the container 
at  appropriate frequencies it is possible to elicit resonances near the natural 
frequencies of the interface. These occur as the box contains an integral number n 
of half-wavelengths over its length such that Ic, = nn/l, with the one-dimensional 
drive effective in contraining IC, to be essentially zero. The wavelengths of the 
resonant modes are given in the figure legend, with the data. 

The magnetic field is produced by Helmholtz coils, driven by an adjustable 
source of current in series with an ammeter, which is calibrated to give the re- 
quired field intensity at the interface. The experimental procedure is identical 
for this and for the experiment of the next section. In  all cases the fluid depth is 
great enough to make effects of the container bottom negligible. 

In  a typical measurement, the resonance condition is established by varying the 
driving frequency so as to approach the resonance once from above and once 
from below. The resulting data are shown in figure 6. 

In  this normal field experiment there is an inadvertent gradient in the imposed 
magnetic field intensity at the interface; therefore the prediction provided by 
(49) is appropriate, in the limit where p'+po, ru + 0, 8, + k ,  a + a and b + a. 
If the frequency in the absence of the magnetic field is defined as wo, then (49) 
predicts that 

This expression is the basis for the solid curve shown in figure 6. The discrepancy 
between theory and experiment is of an order expected from sources of experi- 
mental error. Typically, the resonance frequency is measured with confidence 
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limits of f 5 %. Calibration errors are particularly troublesome because ohmic 
heating of the field coils introduces errors as great as 10% in the inference of 
field intensities from coil current. Finally, the flat equilibrium geometry of the 

F, 

FIGURE 6. (a) Apparatus for measuring resonance frequencies with field imposed per- 
pendicular to interface; vibrations of the tank in the horizontal plane drive the waves. 
(b )  Relative frequency shift as a function of the parameter F,, proportional to the applied 
field intensity. The frequency shifts downward as the applied field intensity is increased. 
Theory: -. 0, 2.0 cm; A, 2.4; x ,  4.0; 0, 4.0. 

interface is difficult to maintain at  higher fields; a direct reflexion of field-gradient 
effects not accounted for and a source of error in establishing the proper value 
of k. Sufficiently short wavelength modes are presented in the data of figure 6 that 
the self-field effects dominate the gradient effects; the gradient term in (62) 
represents a correction under the experimental conditions. 

2-2 
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Ultimately, the downward shift in resonance frequency is terminated by inter- 
facial instability as the frequency reaches zero, and (40) is satisfied. With increas- 
ing magnetization, the instability condition is first met for a mode having the 
Taylorwavelength. This self-field instabilityis the subject of the carefulinvestiga- 
tions of Cowley & Rosensweig, and appears t o  have a threshold which is well 
understood. 
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( b )  

FIULJRE 7. (a)  Apparatus for measuring resonance frequencies in tangential field. ( b )  
Relative frequency shift as a function of P,, a parameter proportional to the imposed 
magnetic field intensity. Pt is defined as the square root of the last term in (42)  divided by 
o,dp. Theory: -. A ,  12.0cm; 0, 10.0; 0, 8.0; v, 6.67; x,  6.20; +, 4-25; 0, 4.25; 0 , 4 . 0 .  
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FIGURE 8. (a)  Apparatus for measuring conditions for instability on interface in adverse 
gravitational acceleration. Magnetized steel plates provide the gradient in imposed field 
intensity required to stablize the interface. A ,  Plexiglas container; B, ferrofluid; C, air- 
tight seals; D, steel plates; E, fixed spacers; F,  fixed gap electromagnet. ( b )  Conditions 
under which incipient instability is observed. R is the distance from the interface to the 
point at which the inner surfaces of the steel plates would converge if extended upward, 
while i is the magnet current. The solid curve is predicted by (57). Theory: -. 
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(ii) Tangential field swrface waves 
With the tangential field experiment shown in figure 7, the resonance frequencies 
shift upward with increasing magnetization. The data shown result from experi- 
mental procedures similar to those discussed in 3 5 (i). In  this experiment, non- 
uniformities in the imposed field are not significant, and (42) suffices to predict 
the frequency shifts. Again, theory and experiment are within an agreement 
consistent with sources of experimental error. 

(iii) Tangential-field gradient stabilization 
A dramatic demonstration of ferrofluid dynamics consists of simply suspending 
the liquid in the top of a partially filled plastic container with the field from a 
small permanent magnet. This is the classic configuration of a liquid suspended 
over a gas. The magnetic field easily prevents Rayleigh-Taylor instability. 

It should be clear from the discussion of uniform field interactions that the 
self-field effect cannot account for stabilization of the ‘upside-down’ interface. 
In  a perpendicular field, instability rather than stability is a consequence of the 
uniform field. In  a tangential field, interfacial perturbations propagating across 
the field lines are not stablized by the field. However, gradients in the imposed 
field make it possible to retain a stable equilibrium of the liquid over the gas, 
even with modest fields and gradients. Note that the magnetic field is not used 
to support the fluid, rather just to stabilize the fluid interface. 

The experiment shown in figure 8 demonstrates this gradient stablization. 
Note that the apparatus assumes essentially the geometry of figure 3 ( b ) ,  with 
(56) and (57) giving a theoretical prediction of the condition for instability. 
Each experimental point represents a different equilibrium position of the 
surface, such that H, of (56) is proportional to 1/R and to the current i in the 
field coils. This is the basis for the solid curve in figure 8. 

To obtain the data points shown, the field magnitude and gradient are estab- 
lished by calibration curves a t  five positions over the 1-5 cm vertical extent of 
the fluid volume. The fluid is injected between the magnetizable plates until the 
set amount of current is no longer able to stabilize the equilibrium. It is important 
that at  all times the upper section of the container is maintained leak-tight, so 
that the field is not used to support the liquid. At the point of instability, the 
liquid suddenly runs down the four edges of the container. The value of R (see 
figure 3 (b )  ) at which this occurs, along with the current setting, then constitutes 
a data point on figure 8, indicated by a circle. Alternatively, some data points 
(squares) are obtained by holding the fluid volume fixed, and reducing the current 
until instability is observed. 

Experimental results and theoretical predictions are well within the bounds 
expected from sources of experimental error. 
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6. Concluding remarks 
Many interactions between a ferrofluid and a magnetic field involve a single 

homogeneous liquid with one or more free surfaces. The developments given here 
emphasize that, even including effects of non-uniform fields and magnetic 
saturation, these are surface interactions. Although major theoretical attention 
is given here to including effects of non-linear magnetization characteristics, 
in retrospect it can be recognized that, for many purposes, including an approxi- 
mate prediction of the experimental results reported in $5 ,  a judicious choice of 
magnetization parameters makes it possible to predict the essential features of 
the dynamics from a theory based on an equivalent linear magnetization charac- 
teristic. For example (39) and (42) are in many cases not altered greatly if 
bb --f k, xs .+ x and q + 1, provided that the actual (non-linear) susceptibility x is 
used to evaluate the magnetization. The equivalent linear theory must incorporate 
the actual magnetization, or it is likely to be grossly in error. 

Although the situations investigated in Q 3 and beyond represent surface 
interactions, the formulation given in $ 2 provides a convenient starting-point 
for the investigation of bulk instability and internal ferrohydrodynamic waves 
as found in inhomogeneous fluids. An important class of interactions in this 
category involves fluids subject to combined thermal and magnetic stress, es- 
pecially if the temperature extremes in the fluid bulk bracket the Curie point. 
Again, there is precedent for such studies from work in electrohydrodynamics 
(Turnbull & Melcher 1969). 

Experimental work on the ferrofluids would not have been possible without the 
co-operation of Dr R. E. Rosensweig, who made available the laboratory facili- 
ties of Avco Corporation, Space Systems Division. Dr R. Kaiser and M i  N. Shep- 
pard were of assistance in performing the experiments. Parts of the work were 
supported by NASA Grant NGL-22-009-014. 
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